Edge vulnerability parameters of split graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-colouring of Split Graphs on the Edge-colouring of Split Graphs

We consider the following question: can split graphs with odd maximum degree be edge-coloured with maximum degree colours? We show that any odd maximum degree split graph can be transformed into a special split graph. For this special split graph, we were able to solve the question, in case the graph has a quasi-universal vertex.

متن کامل

Vulnerability of super edge-connected graphs

A subset F of edges in a connected graph G is a h-extra edge-cut if G − F is disconnected and every component has more than h vertices. The h-extra edge-connectivity λ(G) of G is defined as the minimum cardinality over all h-extra edge-cuts of G. A graph G, if λ(G) exists, is super-λ if every minimum h-extra edge-cut of G isolates at least one connected subgraph of order h + 1. The persistence ...

متن کامل

Diameter vulnerability of graphs by edge deletion

Let f (t, k) be the maximum diameter of graphs obtained by deleting t edges from a (t+1)-edge-connected graph with diameter k. This paper shows 4 √ 2t−6 < f (t, 3) ≤ max{59, 5 √ 2t+7} for t ≥ 4, which corrects an improper result in [C. Peyrat, Diameter vulnerability of graphs, Discrete Appl. Math. 9 (3) (1984) 245–250] and also determines f (2, k) = 3k − 1 and f (3, k) = 4k − 2 for k ≥ 3. c © 2...

متن کامل

The edge tenacity of a split graph

The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...

متن کامل

On sum edge-coloring of regular, bipartite and split graphs

An edge-coloring of a graph G with natural numbers is called a sum edge-coloring if the colors of edges incident to any vertex of G are distinct and the sum of the colors of the edges of G is minimum. The edge-chromatic sum of a graph G is the sum of the colors of edges in a sum edge-coloring of G. It is known that the problem of finding the edge-chromatic sum of an r-regular (r ≥ 3) graph is N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2006

ISSN: 0893-9659

DOI: 10.1016/j.aml.2005.09.011